

CNC-Calc Post Processor Manual

May 2014 | Copyright © 1991-2014 by CIMCO A/S | Web: www.cimco.com | E-mail: info@cimco.com

http://www.cimco.com/
mailto:info@cimco.com

Introduction

Before you start to write a complete post processor, make sure that you cannot make an

existing post processor work by simply modifying the Globals section in an existing one.

Please refer to the document “CNC-Calc Post Processor_Basic configuration” to see how

the output can be modified by means of changes in the Globals section.

One of the new features in CNC-Calc version 7 is the addition of a Post Processor. This

makes it possible for the end user to format the created NC program.

The Post Processors are written in JavaScript. JavaScript was selected because it makes it

possible to define variables with both global and local scopes. It also gives the end user the

possibility to declare and define functions that can be used in formatting and calculation. The

writer of the post processor is in this way given access to all standard mathematical functions

defined in standard JavaScript and all the standard features that this language contains.

It is beyond the scope of this manual to cover the JavaScript language, which is, however,

described in a great number of books and on the World Wide Web. A good source of

information is the site:

http://www.w3schools.com/js/

The best way to write a post processor is to use an existing one, for example one of those

installed with CNC-Calc v7. Select the one that comes closest to the machine that the new

post processor needs to support. In that way the framework is already there, and it is easier to

just modify existing code and debug it.

CNC-Calc and the post processor cooperate to format and create the correct NC program.

This cooperation is established via various functions that are called from CNC-Calc with the

appropriate parameters. The parameters are then used to calculate and output one or more

lines of code in the NC program.

The process of programming a new post processor can be roughly divided into 4 different

areas:

1. Setting up global variables that are used by the core of the post processor and by the

post processor developer alike. These global variables define which decimal point to

use, what kind of end of line that should be used, how circular moves are written etc.

2. Creating the various variables with the correct formatting attached. For each value

type handled by the post processor, there needs to be a defined format. This might

seem like overkill, but since these variables do more than just format the values it is

well worth the trouble. Things like modality and keeping track of the last value

written are automatically handled by these variables, and along with that, complex

formatting will be performed without the need of any additional code.

http://www.w3schools.com/js/

3. Writing the functions to handle the calls from CNC-Calc. For each kind of movement

or action there exists a function in the post processor, which is called when CNC-Calc

needs to create a program block for this kind of movement/action. This means that

functions exist for linear moves, circular moves, drilling header, drilling footer etc.

Most of these functions are quite simple, and when an existing post processor is used

as template very few changes should be needed.

4. Creating and configuring the drill cycles needing support by CNC-Calc. Drill cycles

have always been one of the more complicated topics with post processors, and it is

also one of the more difficult tasks when writing a post processor for CNC-Calc. In

the CNC-Calc post processor drill cycles are handled in four different sections:

 A list of structures defining what input fields should be enabled for input

 onDrillingHeader, which is a function called with a structure of

parameters that contain the values entered in the UI

 onDrillingPoint, which is called once for each hole in the drilling

operation

 onDrillingFooter, which is called once as the last function in the drill

operation

As stated earlier, when you need to write a new post processor, it is to be preferred to find an

existing post processor that is very close to the one needed. Make a copy of this and use the

copy as a template, correcting only the sections that need to be changed. With luck, it might

only be one or two sections that need correcting, and even if not so lucky you still start out

with a functional post processor, which can then be gradually tweaked to fit what is needed.

1. The global variables and their use

At the very start of the Post Processor there is a section called Globals. In this section we

have declared various variables that are used to define some of the rules used to format a

valid NC program. These variables can always be used by the programmer, but some are also

used ‘behind the scene’ by the post processor core.

Name Normal

Values

Description

decimalMark ‘.’ Or ‘,’ This variable defines the decimal mark to be

used when decimal values are shown.

linebreak "\n" Defines the character sequence to be used to

terminate the lines in the NC program.

variableDelimeter " " When more than one variable is shown in a

single line, the variableDelimeter defines

how they should be separated.

tolerance 0.02 The tolerance is normally used in the user

program to define the smallest entity that

should be handled. If for instance a very small,

circular movement is made, the controller may

mistake this as being a 360 degree movement.

showSequenceNumbers true/false If showSequenceNumbers is set to true, all

blocks in the NC program will be formatted

with a line number. This is used in the

function writeBlock that can be modified by

the programmer.

sequenceNumberStart 10 If showSequenceNumbers is set to true,

sequenceNumberStart will define the

starting number used for the first block. This

is used in the function writeBlock that can be

modified by the programmer.

sequenceNumberIncrement 5 sequenceNumberIncrement is only used if

showSequenceNumbers is set to true. The

sequenceNumberIncrement defines the jump

in block numbers between blocks. This is used

in the function writeBlock that can be

modified by the programmer.

useRadius true/false Circular moves are normally written using the

R (radius) or I, J, and K values (center

coordinates). When useRadius is set to true,

circular moves will use the R value. This is

used in the function onCircular that can be

modified by the programmer.

absoluteArcCenter true/false If useRadius is set to false, the circular moves

will use the I, J, and K values. The value of

absoluteArcCenter defines if these values

should be given as absolute center coordinates

or relative to the start of the move. This is

used in the function onCircular that can be

modified by the programmer.

xDiameterProg true/false This field is only used in post processors for

lathes. The value of xDiameterProg defines if

the X values should be output as diameter

values. If not set to true, the X values will be

output as radius.

iDiameterProg true/false This field is only used in post processors for

lathes. If useRadius is set to false the circular

moves will use the I, J, and K values. The

value of iDiameterProg indicates how I

values of circular moves should be formatted.

If iDiameterProg is true the I values will be

given as diameter values, otherwise they will

be as radius. This is used in the function

onCircular that can be modified by the

programmer.

2. Creating an output format

One of the most important aspects of all data outputs is the correct formatting of the

numerical values. The formats may vary depending on the values being handled. When you

for example take a look at the feedrate F it typically has no decimals, as opposed to any of the

coordinates X, Y or Z that usually have 3 decimals or more. Because of the importance of the

formatting the post processor handles it in a way that offers functionalities suitable for most

cases. In order to define a format we use the function createFormat, which takes a list of

value pairs used to define how the format should look. In the table below the possible values

and their default values are shown.

Name Default

value

Description

Prefix “” What should be written in front of the value

width 0 Indicates the width or the integer part of the value

zeropad False Zeropad relates to the integer part of the value. If a width of 4

is set and zeropad is set to true, 1 will be formatted as 0001.

decimals 0 Indicates the number of decimals with which the value should

be formatted.

scale 1 The value is multiplied with this scale factor

forceDecimal False Forces the decimal part of the value to always be written with

the number of decimals indicated in decimals. If decimals is

set to 3 and forceDecimal is set to true, 3.0 will be formatted

as 3.000

forceSign False Makes it possible to always force a sign. For example, 4.25

will be written as +4.25

Let us say we want to create the format to output the X, Y, and Z values. In this example we

will not use the default value, but define all the possible fields in the createFormat format.

We would like to output an X value of 3 as X3.000; so let us look at the values we need to

create this output:

Name Value Description

Prefix “” Here we could have used “X” in order to get the value prefixed with

an ‘X’. The reason why it is left as “” is because we will use this

format to output all the values for X, Y, and Z. Please refer to the

next section to see how we handle the prefix.

width 0 Is set to 0. This does not mean that the width will be zero, but it will

be set to the actual width of the integer part of the value being

formatted.

zeropad False Is set to False. Again, this is to ensure that the integer part is as

wide as the actual width of the integer part of the value being

formatted.

decimals 3 The value will be formatted with max. 3 decimals.

scale 1.0 Since we do not want to scale the value, the scale will be set to 1.0

forceDecimal True We set the forceDecimal to true so all values will be formatted with

exactly 3 decimals (4 becomes 4.000).

forceSign False We do not want to have the sign shown in front of positive values.

 The final definition of our format will look like this:

xyzFormat = createFormat({prefix : ””, width : 0, zeropad : false, decimals : 3, scale : 1.0,

forceDecimal : true, forceSign : false});

3. Using a format to create a variable

When we have created a format we will then use the function createVariable to tie this

format to one or more variables. As the format above was to be used to define the format for

X, Y, and Z, we gave it the name xyzFormat. The prefix field is set to “” to indicate that the

format should have no prefix. Now we need to tie this format to the X, Y, and Z variables.

To do this, we will use the function createVariable. When we create a variable in this way

we get more than the formatting defined in the format we attach. We also get modality

handled automatically, and the member function getLast() returns the last value used.

The function createVariable has two parameters. The first is a list of value pairs and the

second has a format like the one created above. In the table below the possible values and

their default values are shown.

Name Default Value Description

prefix “” That, which should be written in front

of the value.

force False This relates to the subject of modality.

When force is set to false it will only be

written if it has changed since the last

time it was used. On the other hand, if

force is set to true it will always be

written.

Now we will create the variables with the function createVariable. As mentioned earlier, we

will not use the default values, but declare them all instead.

xOutput = createVariable({prefix: "X" , force: false }, xyzFormat);

yOutput = createVariable({prefix: "Y" , force: false }, xyzFormat);

zOutput = createVariable({prefix: "Z" , force: false }, xyzFormat);

We have now created 3 variables: xOutput, yOutput, and zOutput. They all use the

previously defined format, and since force is set to false they are all modal. These variables

have to be handled in a special way in order to get and set their values.

The function call:

var xString = xOutput.format(vx);

will assign to the variable xString a string that is formatted using the defined xyzFormat on

the value vx. After this call the xOutput will remember the value of vx, and if we call it next

time with the same value it will return an empty string because xOutput was declared with

force set to false and is therefore modal.

The function call:

var lastX = xOutput.getLast(vx);

will assign the last numerical value, with which xOutput.format was called. So if the last call

was xOutput.format(vx), then lastX would be assigned the value of vx.

This section has explained how we create format and output variables, and how these are

used. To see more examples of their use, please refer to one of the post processors installed

with CIMCO Edit/CNC-Calc 7.

4. The Post Processor functions

Besides Helper functions used by other functions, most functions are called directly from

CNC-Calc in order to generate the NC program. In the following, we will take a closer look

at each of the functions currently available in the post processor.

Some functions are called at ‘fixed’ places in the post processing, while others are called

when some kind of movements are encountered. The functions called at fixed places will in

the following be named Framework functions, and these will be described here.

4.1. Framework Functions

onInit() This function will be called before any other function in the JavaScript. It is normal

to set up all formatting and output variables in this function. This will ensure that they have

the correct set-up when used later in the post processor. Other variables needing a default

value can also be handled here. Since this function does not return any value, no CNC

program can be generated here.

onOpen(isClipboard) is called at the start of an actual program. This function makes it

possible to create and return NC lines at the start of the program. Program starts might be

different if they are exported to the Editor rather than the clipboard. Therefore, the function is

called with a Boolean parameter that indicates the kind of export being requested. It would

be practical to save the state of this variable for future use in for instance the onClose()

function.

onClose() is the last function called in the post processing of an operation. This would be the

place to return “M30” and other strings that should be inserted at the end of a program. If we

are post processing a program snippet with export to clipboard, then M30 should probably

not be inserted. To prevent this we can look at the isClipboard parameter that was passed to

the onOpen function, and then make the right output on the basis of this.

4.2. Movement Functions

The movement functions are functions that handle the actual movements on both lathes and

mills. They are called from CNC-Calc whenever a movement is encountered, and they create

the actual text output, which is returned to CNC-Calc.

Common for all movement functions, they are called with the movement type as the last

parameter. This movement type is in turn used to get the right feedrate set by CNC-Calc

based on the parameters used in the given operation. To resolve the movement to a given

feedrate, call the function getFeedrate(movement) and this should produce a correctly

formatted feedrate.

Regarding compensation, much the same approach should be used. None of the movement

functions has compensation as a parameter. Instead, when the compensation changes, the

function onCompensation(comp) is called from CNC-Calc. This is done to retain a

compensation change to be captured from those movement functions that actually handle

compensation (on some controllers a compensation change in a circular movement will

trigger an alarm). So the onCompensation function retains the change, which is then retrieved

and handled by the movement functions with a call to the function getCompensation(), which

again returns the correct G-code or other essential control text.

Milling and turning have different movement functions. These movement functions return a

correctly formatted movement string for linear or circular movements. Their declarations

look like the following:

Milling:

function onLinear(vx, vy, vz, movement)

function onCircular(cx, cy, cz, ex, ey, ez, isCW, movement)

Turning:

function onLinear(vx, vz, movement)

function onCircular(cx, cz, ex, ez, isCW, movement)

The coordinates vx, vy, and vz are of the type ‘double’ and together they define the end point

of the linear movement.

For the circular movement, cx, cy, and cz are all ‘double’ and they constitute the absolute

coordinates for the center of the movement.

The coordinates ex, ey, and ez define the end point of the circular movement.

With these values it is possible to format the correct output to be returned to CNC-Calc. You

might need to create a value relative to the start point. This is, however, not included in the

call, but can be found if an output variable was used to format the given coordinate. This

variable retains the last formatted value, which can be retrieved using the function call to the

method output.getLast(). With the above knowledge and by studying the post processors that

were installed together with CNC-Calc, it should be possible to write the correct movement

functions.

5. Creating and handling canned drill operations in
Milling

In the drilling operations for Milling, special steps must be taken in order to handle the

posting of the holes correctly:

First, we must make sure that it is possible to input the correct drilling parameters for a given

operation in the UI. To do this, the MillDrillingFields list in the post processor needs to be

filled out correctly. The MillDrillingFields list contains structures of the type shown below.

The first field is a string, but the other fields are all Booleans, and they define if a given field

in the UI should be enabled or disabled.

Field Name Description

name This is the name of the drilling operation. Any name may be

used as long as it is unique. It is used in the functions

onDrillingHeader, onDrillingPoint and onDrillingFooter to

identify the type of drill cycle being posted.

isLonghand Orders the operations in the UI. All Canned cycles are grouped

together and the same goes for longhand cycles.

plungingFeedrate Enable / disable the plungingFeedrate field.

retractFeedrate Enable / disable the retractFeedrate field. This field is only

used if the plungingFeedrate field is enabled. Otherwise it is

always disabled.

firstDepth Enable / disable the firstDepth field.

degressionType Enable / disable the degressionType field.

degression Enable / disable the degression field.

peckingRetract Enable / disable the peckingRetract field.

minimumDepth Enable / disable the minimumDepth field.

firstFeedrateFactor Enable / disable the firstFeedrateFactor field.

upperDwell Enable / disable the upperDwell field.

lowerDwell Enable / disable the lowerDwell field.

pitch Enable / disable the pitch field.

tappingSpeed Enable / disable the tappingSpeed field.

retractSpeed Enable / disable the retractSpeed field.

After these structures to handle the UI are filled out correctly, we can start looking at the

definition of the functions to handle the canned operations. Canned drill cycles are generated

using three different functions:

function onDrillingHeader(drillHeader) is called before any hole coordinates are passed to

the post processor. The drillheader is a structure that contains all the parameters from the

drilling parameters UI. These parameters are:

Name Description

name The name of the selected drilling operation. This is the name

that was defined in the MillDrillingFields structure and is

used to identify the operation.

isLonghand Indicates if this is a longhand or canned operation. This

parameter makes it easier to organize these two types into two

different sections of code.

retractPlane The retract plane is the height to which the drill is retracted

between each individual hole. This value is always absolute.

referencePlane This is the value of the absolute reference plane. If either the

safe distance or end depth is given as relative coordinates,

they are relative to this plane.

safeDistanceIsAbsolute The value of this Boolean indicates, whether the safe distance

is given as an absolute value or relative to the reference plane.

safeDistance The value of the safe distance, where the transition from rapid

move to feed is performed.

endDepthIsAbsolute This Boolean indicates, whether the safe distance is given as

an absolute value or relative to the reference plane.

endDepth This is the depth of the hole.

firstDepth When pecking is used, this is the depth of the first peck.

firstFeedrateFactor The feedrate could be set to a different value for the first

peck. This factor determines what it is.

degressionType If some kind of degression should be used between pecks, this

contains the type (as enumerator) and it could be set to none,

value or factor.

degression If the degression was set to value or factor, this value is used

to calculate the new depth.

peckingRetract This is the amount that the drill should retract between pecks.

minimumDepth If degression is used, the minimum depth can set a lower limit

of the peck depth.

usePlungingFeedrate This Boolean indicates if a plunging feedrate should be used

or not.

plungingFeedrate Is the value of the plunging feedrate.

useRetractFeedrate Indicates if retract feedrate should be used or not. Notice, that

if no plunging feedrate is used, it has no meaning to define a

retract feedrate.

retractFeedrate This is the retract feedrate.

useTopDwelling If top dwelling is used, this Boolean is set to true, otherwise

false.

topDwelling The value of the top dwelling. Usually this will be the time in

seconds.

useBottomDwelling Used to indicate if bottom dwelling should be used.

bottomDwelling The bottom dwelling time. Usually given in seconds.

pitch If this is a threading operation, this parameter contains the

pitch of the thread.

useTappingSpeed Used to indicate, if a special speed should be used for tapping.

tappingSpeed If different speeds are used for tapping and retract, this

parameter contains the tapping speed.

useRetractSpeed Used to indicate, if a special speed should be used for retract.

This only has meaning, if tapping speed is used.

retractSpeed This parameter contains the retract speed.

Normally, the onDrillingHeader can be set up to do a few things. Firstly, it should always

save drillHeader in a global variable so it can be accessed from functions onDrillingPoint and

onDrillingFooter. Secondly, it could calculate the values used to generate the header of the

canned cycle, but this can also be done in the onDrillingPoint function as long as the header

was saved here.

Function onDrillingPoint(x, y) is called for each hole that needs to be posted. The first call to

this function should write the header of the canned operation. The reason for this is that if no

holes were selected and the header was written in onDrillHeader, then the header would be

invalid.

Function onDrillingFooter() is called as the last function after all holes have been posted. In

this function the termination of the canned operation should be inserted into the NC program.

The function returns the valid termination, if one exists.

6. Creating and handling canned drill operations in
Turning

As with Milling, in the drilling operations for Turning, special steps must be taken in order to

handle the posting of the holes correctly:

Instead of the MillDrillingFields for Milling, the TurnDrillingFields list in the post

processor is used to configure the way the UI is shown. In the TurnDrillingFields the entry

fields in the UI are either enabled or disabled depending on the parameters, with which the

user should be concerned. Below is a table showing the configurable fields for the drill

operations in Turning.

Field Name Description

name The name of the drilling operation. Any name may be used as long

as it is unique. It is used in the function onDrilling to identify the

type of drill cycle that is being posted.

isLonghand Is used to order the operations in the UI. All Canned cycles are

grouped together and the same goes for longhand cycles.

plungingFeedrate Enable / disable the plungingFeedrate field.

retractFeedrate Enable / disable the retractFeedrate field. This field is used only if

the plungingFeedrate field is enabled. Otherwise it is always

disabled.

usePecking Enable / disable the usePecking field.

firstPeckDepth Enable / disable the firstDepth field.

subsequentPeckDepths Enable / disable the degressionType field.

peckClearance Enable / disable the degression field.

peckRetract Enable / disable the peckingRetract field.

useUpperDwell Enable / disable the upperDwell field.

uselowerDwell Enable / disable the lowerDwell field.

pitch Enable / disable the pitch field.

When these structures have been filled out for all the supported drilling operations we can

write the turning functions to support these. As opposed to drilling in milling, where there

can be multiple holes in one operation, center drilling drills only one hole in the center of the

part. Therefore, the drilling for turning is simpler than it is for milling and there is only one

function, called once for each drilling operation. That function is described below:

Function onDrilling(drillHeader) is the only function called for a drilling operation and it

contains all the parameters needed to generate the NC code for this operation.

Name Description

Name The name of the selected drilling operation.

isLonghand Indicates if this is a longhand or canned operation. It makes it

easier to separate these two types into two different sections

of code.

startDepth The absolute height of the start of the material.

endDepth The absolute depth of the hole.

safeDistance The value of the safe distance, where the transition from

rapid move to feed is performed. This is an absolute value.

retractDistance The retract plane is the height to which the drill is retracted

after the operation is performed.

usePlungingFeedrate This Boolean indicates, if a plunging feedrate should be used

or not.

plungingFeedrate Is the value of the plunging feedrate.

useRetractFeedrate Indicates if retract feedrate should be used or not. Notice that

if no plunging feedrate is used, it has no meaning to define a

retract feedrate.

retractFeedrate This is the retract feedrate.

Pitch If this is a threading operation, this parameter contains the

pitch of the thread.

UsePecking If the hole is going to be drilled with a pecking operation,

this parameter is set to true.

firstPeckDepth When pecking is used, this is the depth of the first peck.

subsequentPecksDepths After the first peck has been made, this is the depth of all

subsequent depths.

peckClearance This is the distance over the previous depth, where a

transition from rapid to feed is made.

PeckRetract This is the amount that the drill should retract between pecks.

useUpperDwell If top dwelling is used, this Boolean is set to true, otherwise

false.

upperDwell The value of the top dwelling. Usually, this will be the time

in seconds.

useLowerDwell Used to indicate, if bottom dwelling should be used.

lowerDwell The bottom dwelling time. Usually given in seconds.

useDrillTipCompensation In some cases, where we want to drill completely through a

part, we can add the length of the tip to the depth of the hole

(the depth is here the thickness of the part).

drillDiameter The diameter of the drill. This diameter is used to calculate

the length of the drill tip.

drillTipAngle This is the angle of the tip used to calculate the tip length.

7. Setting up the Backplot to show the Post
Processed file correctly

Figure 1: ISO Milling Backplot Set-up

In Figure 1 we see the Backplot Configuration for ISO Milling and we will now see how we

need to change the setup to reflect the variables in the Globals section.

The only part of the Milling setup that can be influenced by the variable in the Globals

section is the Arc Type drop-down menu. The Arc Type is the drop-down menu that is shown

open in Figure 1. The choices in this drop-down menu depend on the Globals variables

useRadius and absoluteArcCenter. In the table below the values of the variables and the

corresponding Arc Type are shown.

Variable values Correct Arc Type Selection

useRadius = true absoluteArcCenter = false Radius Value

useRadius = true absoluteArcCenter = true Radius Value

useRadius = false absoluteArcCenter = false Relative to Start

useRadius = false absoluteArcCenter = true Absolute Arc Center

In Turning there are two more values in the Globals section that will influence the setup of

the Backplot. Below in Figure 2 is shown the Backplot Configuration for ISO Turning.

Figure 2: ISO Turning Backplot Set-up

The Arc Type in Turning should be selected from the Drop-down menu based on the Globals

variables useRadius and absoluteArcCenter, exactly as described under Milling. When we

look at Turning we also have to consider the possibilities regarding diameter programming.

In the post processor the diameter programming is handled by the Global variables

xDiameterProg and iDiameterProg. These variables correspond to the fields Diameter

programming and Arc Center is specified as diameter. In the following table you can see how

the values of the Global variables correspond to the fields in the Turning setup.

Variable Values Correct Backplot Setup

xDiameterProg = false

iDiameterProg = false

Diameter programming is unchecked

Arc Center is specified as diameter is unchecked

xDiameterProg = false

iDiameterProg = true

Diameter programming is unchecked

Arc Center is specified as diameter is unchecked

xDiameterProg = true

iDiameterProg = false

Diameter programming is checked

Arc Center is specified as diameter is unchecked

xDiameterProg = true

iDiameterProg = true

Diameter programming is checked

Arc Center is specified as diameter is checked

If the Arc Type drop-down menu and the checkboxes Diameter programming and Arc Center

is specified as diameter are checked respectively unchecked as described above, the Backplot

should show the correct tool paths.

